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Abstract: Optical coherence tomography angiography (OCTA) is a high-resolution, depth-
resolved imaging modality with important applications in ophthalmic practice. An extension
of structural OCT, OCTA enables non-invasive, high-contrast imaging of retinal and choroidal
vasculature that are amenable to quantification. As such, OCTA offers the capability to identify
and characterize biomarkers important for clinical practice and therapeutic research. Here, we
review new methods for analyzing biomarkers and discuss new insights provided by OCTA.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Many ocular retinal diseases are either vascular in origin or include a vascular component. In
such diseases, detecting vascular biomarkers is key to therapeutic research, understanding disease
etiology and pathophysiology, and clinical practice. The most common imaging modalities
employed to detect vascular biomarkers are fundus photography, dye-based angiography, and
OCT angiography (OCTA). Of these, OCTA has several relative advantages. Only OCTA
achieves capillary scale resolution. This means that pathology that afflicts capillaries, such
as capillary dropout, is best imaged with OCTA. OCTA also obtains higher vascular contrast
than fundus photography and is not disrupted by the dye leakage that can obscure vessels in
dye-based angiography. All of these aspects are advantageous not only for detecting but also
for quantifying vascular pathologies using OCTA. Furthermore, OCTA is uniquely capable of
providing depth-resolved biomarkers. Combining these relatively powerful biomarker detection
capabilities with non-invasive procedures makes OCTA an extremely promising screening
technology for clinical practice.

OCTA is a rapidly developing imaging modality, and OCTA is currently providing new insights
into retinal function all the time. This review aims to cover state-of-the-art OCTA-based vascular
biomarker detection and quantification. To this end, we begin with a brief review of OCTA signal
and image generation so that the advantages and limitations of OCTA-based biomarker analysis
can be contextualized. The review of OCTA signal generation covers essential topics and is
not exhaustive; for readers seeking more detailed accounts of similar material we recommend
Kashani et al. [1] and Chen et al. [2]. We also note that, as a consequence of the large number
of new OCTA studies published each year, OCTA terminology is sometimes unsettled or can
change. We have tried to be consistent with accepted usage in this review, but researchers are
encouraged to refer to Munk et al. [3] in their own work to avoid re-coining terms.

2. OCT angiography fundamentals

2.1. Flow signal generation in OCT angiography

Flow signal in OCTA data is generated by measuring intrinsic motion contrast between successive
OCT cross-sectional scans (B-scans). Because it is an interferometric approach, the OCT signal
includes both an amplitude and phase component. The flow signal can be generated by considering
either of these channels independently (amplitude- or phase-based OCTA) or simultaneously
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(complex-based OCTA). Phase must be compensated for in phase-based measurements [4].
Since amplitude measurements are sufficient to achieve capillary scale angiography, commercial
manufacturers have mostly eschewed purely phase-based OCTA signal generation in favor
of amplitude-based signal generation. Heidelberg, Optovue, and Topcon instruments all rely
on amplitude-based processing. Complex-based OCTA uses all of the information collected
from a cross-sectional scan, which is useful for improving flow detection sensitivity. Optical
microangiography (OMAG) OCTA processing [5] does this in Zeiss instruments.

Artificial intelligence-based flow signal generation. Flow signal generation is also amenable
to artificial intelligence-based methods [6]. Deep learning-based flow signal generation has at
least one advantage relative to traditional signal processing approaches in that repeat scans to
measure motion contrast are not strictly necessary; but in a study demonstrating flow signal
generation from a single scan volume (i.e., a volume without repeats) angiograms lacked some
capillary scale details that were apparent using traditional motion contrast approaches [7]. Flow
signal generation from a single reflectance volume using artificial intelligence can be improved
by considering vascular connectivity [8]. Artificial intelligence itself is a major area of active
research in OCTA. For more information on this subject, readers are referred to Hormel et al. [9].

Spectral splitting. Motion contrast can be analyzed separately in different frequency bands and
then averaged to produce a final estimate of magnitude [10]. This approach, “spectral splitting”,
has been shown to improve flow detection sensitivity (or equivalently reduce the number of repeat
scans needed to produce an adequate signal). The trade-off is loss of axial resolution: because
each of the constituent frequency bands must be narrower than the full spectrum spectral splitting
sacrifices axial resolution. Spectral divisions, however, can be chosen to maintain resolution
sufficient to resolve capillaries. At a given resolution the number of spectral splits can be chosen
to maximize flow signal-to-noise ratio [11]. Optovue devices use a spectral splitting algorithm,
“split-spectrum amplitude-decorrelation” (SSADA) [10]. SSADA uses just the amplitude signal,
but phase- and complex-based processing can also incorporate spectral splitting [12].

Flow magnitude and interscan time. For each of these approaches an important parameter is
the inter-scan time between the successive B-scans. Even with erythrocyte density and vessel
diameter being constant/consistent, flow signal is only linear for flow velocities within a certain
range, the dynamic range, determined by the interscan time. [13–15]. Flow velocities that are
above the dynamic range will lead to signal saturation in which OCTA becomes completely
insensitive to differences in flow magnitude. Low flow velocities are even more problematic
because vessels with low flow velocity, many of which are pathological, may not be detected
at all. For this reason, the lack of flow signal in OCTA should not be mindlessly equated
with a complete lack of flow. These constraints can lead to some trade-offs in the choice of
interscan time for viewing different pathologies. For example, it has been suggested that the
failure of OCTA to detect some microaneurysms is a result of interscan times being too short to
register low flow speeds [16]. With at least three separate scans multiple interscan times can be
sampled in order to extend the flow detection dynamic range and enable comparison of relative
velocities. This approach, variable interscan time analysis (VISTA) [17], can help to characterize
microaneurysms and other vascular disorders prevalent in diabetic retinopathy and other diseases
[18–20]. Our group’s high dynamic range OCTA (HDR-OCTA) uses bidirectional scan patterns
to extend the dynamic range more efficiently than raster scanning [21]. Both HDR-OCTA and
VISTA can be helpful for blood flow velocity comparisons, but they are not necessary [22], and
relative flow velocity estimation using eigenvalue decomposition has been verified using flow
phantom experiments [23].

Blood flow velocity is not the only metric besides morphology that new approaches to OCTA
measurement can interrogate. Flux is also important since it represents the amount of nutrient
delivery achieved by blood flow more directly than flow velocity, which does not incorporate
the blood volume moving through a region in a given time. OCTA proxies for flux have found



Review Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4544

applications in explanatory studies of systemic disease [24], diabetic retinopathy [25], and
glaucoma [26], among other pathologic features [27].

Projection artifact removal. In order to image deeper retinal and choroidal layers, the probe
beam must traverse superficial tissue. If the superficial tissue includes vessels, time-varying
shadows or multiply scattered photons can produce projection artifacts. These artifacts cause
superficial vascular patterns to be mimicked in deeper layers. Projection artifact removal is
a complicated problem. One way of removing projection artifacts is subtracting signal in en
face images of more superficial layers from deeper [28–30], but this approach does not remove
artifacts in cross-section and is prone to segmentation errors. It is best to compensate projection
artifacts volumetrically so as to remove their influence in both en face and cross-sectional images;
this can be done by considering the reflectance signal and signal attenuation in conjunction with
the flow signal (Fig. 1) [31]. For a more detailed treatment of projection artifacts, readers are
referred to Hormel et al. [32] and Spaide et al. [33]. For more information on projection-resolved
OCTA readers can consult Hormel et al. [34].

Fig. 1. Projection artifact removal. In the uncorrected angiograms (top row), projection
artifacts in the en face images of the intermediate (ICP) and deep (DCP) capillary plexus
show artefactual projection artifacts that mimic the pattern of large vessels in the superficial
vascular complex (SVC). In cross-section at the location of the dotted line in the uncorrected
SVC en face image, these artifacts appear as elongated tails underneath vessels, shown
as flow signal (violet: inner retinal, yellow: outer retinal, red: choroidal) overlaid on the
reflectance image. With permission from Wang et al. [31].

2.2. Angiogram construction

Once the flow signal has been generated, it still needs to be displayed for image graders and
clinicians. Many algorithms also take angiogram images as input. Since the flow signal is captured
in three dimensions, multiple data representations are possible. Volumetric displays are difficult
to interpret. Most OCTA data is displayed in two dimensions, either in cross-section or en face
representations. Cross-sectional images are useful for differentiating macular neovascularization
lesion types [35,36] and identifying retinal neovascularization and related pathology [37,38]. En
face images are useful because they display information analogously to color fundus photography
and dye-based angiography, and because of the orientation of the retinal plexuses along the
dimensions being viewed [39,40]. They can also be color-coded by depth in order to retain
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volumetric information while retaining ease of interpretation [41]. En face angiograms can be
constructed by projecting the flow signal through specific anatomic layers; using maximum value
projection produces angiograms with higher flow signal-to-noise ratios and better repeatability
than alternative projection methods [42,43].

Anatomic layer segmentation is needed to produce en face images. The retinal plexuses are
located within or between different anatomic layers [39,40]. In addition to retinal vasculature,
OCTA can also image the choriocapillaris. Furthermore, while OCTA cannot typically image
deeper choroidal vessels, these can visualized using the structural channel. To display any of these
vascular tissues in isolation requires accurate segmentation of the boundaries between these layers.
There are several approaches for segmenting retinal layer boundaries; for traditional rules-based
algorithms graph search methods have been notably effective [44–46]. Like many image analysis
problems, retinal layer segmentation can be addressed with deep learning algorithms [47,48].
Traditional and deep learning anatomic layer segmentation methods are often not mutually
exclusive, and deep learning-based estimates of retinal layer boundaries can be refined by
subsequent application of graph search methods [48,49]. And, while most layer segmentation
methods rely on just the reflectance signal, the flow signal can also improve segmentation
accuracy in some contexts, notably for the retinal pigment epithelium [50] and for identifying
fluid regions [51].

Once an en face angiogram has been obtained, image quality can be improved through artifact
reduction, filtering, and denoising. Scan misalignment due to involuntary eye movement can
often be corrected by merging B-scans captured along orthogonal axes [52,53]. Image registration
can also help to remove motion artifacts [54–56]. However, even with such approaches, some
residual motion may manifest as flow signals in OCT angiograms, and signal attenuation or
under-sampling can otherwise make vessels difficult to recognize. For this reason, vessels in
en face images are frequently enhanced in software. Handcrafted vessel-enhancing filters have
been applied to this purpose [57–59]. Deep learning has also been used to improve en face
OCTA image quality, with deep learning networks capable of reconstructing under-sampled data
volumes at improved resolution and signal-to-noise ratio (Fig. 2) [60,61]. Deep learning can also
denoise angiograms volumetrically and in wide-field applications [62].
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Fig. 2. Angiogram reconstruction using deep learning. The network is comprised of
three parts: a low-level feature extraction layer, high-level feature extraction layers, and
a residual layer. The kernel size in all the convolutional layers is 3× 3. The number of
channels in the green, blue, and yellow convolutional layer are 128, 64, and 1, respectively.
Red layers are concatenation layers that concatenate the output of the convolution block with
its input via skip connections. (A) Example input and (B) output 6× 6-mm angiogram. With
permission from Gao et al. [61].

3. Imaging vascular biomarkers with OCT angiography

OCTA devices employing some innovations as described above are capable of imaging vascular
morphology and pathology in human eyes with higher vascular contrast than alternatives such
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as dye-based angiography [63,64], and in multiple layers [65]. In the following we discuss
several of the biomarkers most often analyzed with OCTA. For readers seeking more information
on the application of OCTA to disease in general, we recommend Spaide et al. as the most
comprehensive review of the clinical applications of OCTA [66].

3.1. Perfusion

With its ability to detect blood flow in the retina and choriocapillaris, OCTA is useful for
assessing perfusion. OCTA does not measure circulation directly due to the difficulty of
accurately measuring flow velocity [13,15]; instead, OCTA measurements determine perfusion
through proxy measurements that are ultimately different means of assessing vascular anatomy.

Vessel density. Vessel density (Fig. 3) is among the most common metrics assessed in OCTA
images and is useful for staging and diagnosing prevalent diseases including age-related macular
degeneration [67], diabetic retinopathy [68,69], and glaucoma [70–72]. It is usually measured
as a percent area. However, given that the transverse resolution in commercial OCTA systems
and most research instruments is lower than the anatomic width of capillaries, vessel density
measured in this way is not anatomically correct. Obtaining anatomically correct vessel densities
would require a reduced optical spot size on the retina relative to contemporary commercial
devices as well as a sampling density similar to the scale of capillaries, ideally also meeting the
Nyquist sampling criterion. This requirement becomes more arduous as fields of view in OCTA
continue to expand due to the constitutive trade-off between field of view and sampling density
for a scan acquired in a similar timeframe. Achieving high density sampling in large fields of
view can significantly increase procedure times [73]. To avoid this issue, some vessel density
measurements are made after vessel skeletonization.

Fig. 3. Vessel density maps in an eye with diabetic retinopathy. Top row: projection-
resolved angiograms of the superficial vascular complex (SVC; left), intermediate (ICP;
middle) and deep (DCP; right) capillary plexuses. Second row: corresponding vessel density
heat maps from our group’s COOL-ART reading software. The vessel density heatmaps
reveal low vessel density in regions of capillary dropout.

A straightforward way to achieve a vessel density measurement is to segment vessels in en
face images. Traditional methods mostly accomplish this through a combination of filtering and
thresholding [68,74–76]; given that the background levels may vary throughout an image, it is
worthwhile to perform compensation for variation in reflectance [77]. In addition to traditional,
handcrafted thresholding methods, vessels can also be segmented with the aid of deep learning
algorithms [60,61,78]. It should also be noted that many published results (e.g. [79–81]) rely on
vessel density measurements supplied by commercial devices’ proprietary software.



Review Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4547

Direct comparison of the efficacy of most of these specific approaches is lacking. One study
found that vessel density measurements based on deep learning were better able to stage glaucoma
than traditional rules-based thresholding [78]. On the other hand, there does not seem to be a
clear advantage for any traditional thresholding method compared to another in head-to-head
comparisons [82]. While no traditional thresholding method is obviously superior to others,
the choice of method can still lead to significant differences in vessel density measurements
made on the same eye, as can the study instrument and scan location, pattern, and size [82–85].
If these confounding influences are accounted for, vessel density measurements achieve high
repeatability [83,86,87]. In total, these conclusions indicate that when care is taken to preserve
instrument type/flow signal generation, vessel segmentation approach, and scan parameters
(pattern/location/size), vessel density measurements can be reliably compared, but not otherwise.
Future comparisons between techniques could be a facilitated by public datasets such as ROSE
which enable direct comparisons [88].

Even through OCTA is a volumetric imaging modality, studies measuring vessel density in
three-dimensions are rare. One study found that three-dimensional vessel density was more highly
correlated with DR severity than two-dimensional, and also better able to diagnose different
severities of the disease [89].

Non-perfusion area. Non-perfusion areas are localized regions of vessel loss and capillary
drop-out. They are identified as regions in which the distance to the nearest vessel is larger
than a physiologically determined threshold [90,91]. One subtlety is that since the distance to
the nearest vessel in pathologic non-perfusion areas is often smaller than the foveal avascular
zone, the foveal avascular zone is typically also segmented by non-perfusion area algorithms
despite the fact that it is not pathological. Because the foveal avascular zone is large and highly
variable in extent, it can adversely influence the utility of non-perfusion area measurements for
disease diagnostics. To avoid this confounding influence, extrafoveal avascular area, measured
only within regions beyond a set distance from the foveal avascular zone, is sometimes used as
an alternative [91].

Strategies that rely on vessel segmentation to determine non-perfusion area are vulnerable to
imaging artifacts such as signal attenuation (which can introduce false positive non-perfusion
areas) or projection artifacts (which can introduce false negatives). Instead of measuring non-
perfusion areas by segmenting vessels non-perfusion areas can be segmented directly using deep
learning [92–94]. For this task it is useful to analyze the reflectance channel to identify projection
[31] and signal reduction artifacts (Fig. 4) [95].

Non-perfusion area measurements are useful for assessing retinopathy severity [96,97]. For
this purpose, it is also useful to measure non-perfusion area in individual plexuses since doing so
can achieve better retinopathy staging, though some published studies disagree as to which plexus
or complex is superior for this task [96,98]. These disparities may be the result of methodological
differences in how non-perfused regions are detected.

Choriocapillaris flow deficits. Perfusion can also be lost in the choriocapillaris in several
diseases, including leading causes of blindness such as AMD, DR, and glaucoma [99–103].
Imaging the choriocapillaris with OCTA is more difficult than imaging superficial retinal layers.
The choriocapillaris is located beneath the retinal pigment epithelium, a strongly reflecting layer
that attenuates the reflectance signal. Imaging in the choriocapillaris is consequently prone to
both signal attenuation and projection artifacts, and the density of the choriocapillaris vasculature
means that individual capillaries may not be resolvable. To ensure the challenges of imaging
in this region are met it is important to consider the anatomic slab boundaries used, projection
method employed, effect of scan size, sample beam wavelength, and comparisons to other imaging
modalities for validation [104,105]. As with vessel density quantification, it is good practice to
either preserve scan size or verify that measurements do not change between different scan patterns
before comparison. And as noted above (angiogram construction), maximum projection seems
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Fig. 4. Non-perfusion area detection using deep learning. (A) OCT reflectance image
of the inner retina. (B) Gaussian-filtered reflectance intensity map of the inner retina. (C)
Inner retinal thickness map. (D) The en face angiogram of the superficial vascular complex.
(E1-E3) Three convolution networks with the same structure. (F) Detection result with
probability maps for perfusion loss (blue) and signal reduction artifacts (yellow). With
permission from Guo et al. [95].

to produce en face angiograms more amenable to quantification [42,43]. Because of its posterior
location, signal penetration is essential for quality choriocapillaris imaging, and swept source
devices that use longer wavelengths than spectral domain instruments (840 vs. 1050-nm) produce
clearer choriocapillaris images due to longer wavelengths having superior tissue penetration
[106,107]. Choriocapillaris boundary selection, however, is tricky. More superficial boundaries
risk segmentation errors because the choriocapillaris is not always located a consistent depth
from Bruch’s membrane, but deeper boundaries may be visualizing projection artifacts and can
be disrupted by in situ flow from deeper choroidal vessels [108,109].

In the choriocapillaris, due to anatomic differences with the retina, flow deficits are a better
way to measure loss of perfusion than non-perfusion area. Similar to non-perfusion areas, flow
deficits are regions that lack flow, but they are typically much smaller than non-perfusion areas.
They are variously quantified as flow deficit percent area (which can be achieved across multiple
scales), mean flow deficit area, flow deficit number, and total deficit area [19,110,111].

Since we need only know which pixels lack flow signal in order to identify flow deficits, we
have another example of a vessel segmentation problem which can be solved using thresholding
and filtering strategies similar to those used to measure vessel density. A popular approach is to
use Phansalkar’s method [112–115], but this approach is not necessarily superior to other choices
such as fuzzy c-means depending on which flow deficit metric is being evaluated [111] (i.e.
flow deficit density, total area, etc.). Complicating application of Phansalkar thresholding is the
window radius parameter, which significantly affects flow deficit measurements; this parameter
should be chosen to be between 1 and 2 times the (anatomic) vessel radius in the region of
interest [111,116]. Another consideration for thresholding strategies for flow deficit detection
is attenuation caused by concomitant pathology such as drusen, which can be both strong and
localized. One method due to Zhang et al. compensated for this effect by multiplying the
choriocapillaris angiogram by an inverted reflectance image of the same slab, thereby boosting
the flow signal in areas of strong attenuation [110]. This approach was applied to multiple studies
(e.g. [117–119]), but it can also introduce new artifacts which are exacerbated by projection
artifact removal [109,120]. Restricting inverted reflectance values in hyporeflective regions can
help alleviate this issue [121]. Regardless of the segmentation strategy used, it can also be helpful
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to identify flow deficits that are larger than the average intercapillary spacing in order to assess
pathology (Fig. 5) [111,119,122].

Fig. 5. Choriocapillaris (CC) flow deficits identified with OCTA. OCTA images were
generated using 3 repeat 3× 3- and 6-×6-mm scans from a subject with normal eyes. (A,
D, G, J, M, P) Swept source optical coherence tomography angiography (SS-OCTA) en
face images. (B, E, H, K, N, Q) Binary images of segmented flow deficits (FDs) (white)
using the fuzzy C-means method. (C, F, I, L, O, R) Color coded FD SS-OCTA map (red)
after removing FDs below normal intercapillary distances and projection artifacts (yellow).
Reprinted with permission from Chu et al. [111].

Flow deficit metrics are of particular use in analysis of AMD, where they can help with disease
prognosis [112,123], are correlated with the presence of drusen [124] and neovascular lesions
[125], and predict geographic atrophy lesion growth rate [117,126].

3.2. Foveal avascular zone metrics

The foveal avascular zone (FAZ) is enlarged and remodeled in several diseases [127–129]. It can
be quantified with OCTA in order to gauge these developments using several metrics which could
be divided into size and shape categories. For size, these would include FAZ area, horizontal and
vertical diameter, and Feret diameter; for shape, circularity and aspect ratio (along other less
common metrics for both) [130–133].

Measurement of the FAZ relies on accurately locating the surrounding vessels, so quantification
relies on similar segmentation strategies as those discussed above for vessel density, non-perfusion,
and choriocapillaris deficits (Section: Perfusion) measurements. Similar to vessel density
measurements, published reports have noted high repeatability for FAZ metrics made on the
same instrument using the same processing [134,135]. Amongst the metrics themselves, one
study found that shape metrics obtain more repeatable measurements [133]. However, like vessel
density measurements, FAZ statistics may yield significantly different results in the same eye
imaged with different devices and segmentation approaches [85,136,137]. Deep learning has
also been employed to segment the FAZ, with the result showing better agreement with manual
segmentation in eyes with DR relative to a tradition rules-based method [138]. Deep learning
methods have also been able to establish pre-clinical changes in the FAZ predictive of developing
DR and loss of visual acuity [139].
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An additional challenge for using the FAZ to diagnose and assess disease is the wide variation
in FAZ area in healthy individuals [140]. Much more consistent is the width of the ganglion
cell complex at the edge of the baseline FAZ (the original FAZ before the onset of DR) [141].
Vessel metrics within para-FAZ boundary region dictated by retinal thickness are better able
to assess DR severity than the same metrics relying on the FAZ boundary dictated by the flow
signal (Fig. 6) [89].

Fig. 6. Assessing perfusion loss near the foveal avascular zone (FAZ) using a baseline
FAZ region determined from retinal thickness. 3D para-foveal avascular area (FAZ) vessel
density in eyes of healthy control (A), diabetes without retinopathy (B), mild to moderate
nonproliferative DR (NPDR) (C), and proliferative DR (PDR) (D). Upper panel of A-D: en
face maximum projection of inner retinal angiogram. The inner green line represents the
theoretical baseline FAZ (tbFAZ) boundary; the outer green line represents 600 µm distances
from the tbFAZ boundary in the transverse direction. The white horizontal line indicates the
position of a representative B-scan in the panel below. Lower panel of A-D: cross-sectional
B-scan overlaid with angiographic signal (red). The green vertical lines indicate the analytic
para-FAZ volume boundary locations in the inner retina. Right panel of A-D: corresponding
volumetric para-FAZ OCTA. With permission from Wang et al. [89].

3.3. Neovascularization

In the biomarkers already considered, pathology was largely indicated by a loss of vascularization.
In neovascular lesions, the opposite occurs- new vessel growth creates pathology, which frequently
leads to a serious threat to vision.

Macular neovascularization. Macular neovascularization (MNV) occurs in AMD, pathologic
myopia, polypoidal choroidal vasculopathy, as well as rare diseases [142–145]. It is particularly
important in AMD both because exudative AMD remains responsible for most cases of blindness
[146], while at the same time neovascular AMD is treatable with anti-vascular endothelial growth
factor (anti-VEGF) therapies [147]. Taken together, these facts mean that the detection of MNV
is critical for preserving vision.

OCTA can differentiate between different MNV lesion types by locating them below (type I) or
above (type II) retinal pigment epithelium or within the inner retina (type III) (Fig. 7) [9]. These
lesion types may respond differently to treatment [148]. Lesion size and complexity, which are
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both quantifiable with OCTA, are also predictive of treatment response [149,150]. Because it is
non-invasive, OCTA is also a useful means for monitoring this response and lesion dynamics
(Fig. 8) [151–153]. Because it is capable of detecting neovascular vessels before exudation has
occurred, OCTA is also capable of analyzing pre-clinical lesions [154,155].

Fig. 7. Differentiating neovascular lesion type with OCTA. By overlaying the flow signal
on the structural signal, a combination of structural OCT and OCTA is uniquely capable
of ascertaining neovascular lesion type. Row 1: en face images; row 2: cross-sectional
images taken at the location of the dotted white lines in row 1, with flow signal overlaid on
the structural image. (A) Retinal neovascularization can be identified due to the location of
the neovascular vessels above the internal limiting membrane. (B) A mixed type I / type II
macular neovascular (MNV) lesion, with the type I component shown in yellow and the type
II in green. The separate components can be identified by their location respectively below
and above retinal pigment epithelium. (C) Type III MNV, with the cross-sectional image
showing vessels extended between the choroid and retina. With permission from Hormel et
al. [9].

MNV lesion and vessel area and are both amenable to automated quantification in OCTA.
However, MNV often occurs in the outer retina, which is one of the more difficult regions to
visualize using OCTA due to the nearby presence of the highly reflecting RPE, which produces
strong projection artifacts. Deep learning in combination with a well-chosen set of image inputs
is able to distinguish these projection artifacts, and is capable of accurately segmenting both
MNV lesions and vasculature [157]. A deep-learning-based approach was recently demonstrated
to be capable of identifying MNV lesions in a large, clinically-realistic dataset including several
diseases with MNV and multiple images of healthy eyes and eyes with diseases (including less
advanced stages of AMD) without [156].

Retinal neovascularization. Unlike MNV, retinal neovascularization (RNV) can occur
throughout the retina, including in peripheral regions far from the macula [158]. It is a key
pathologic development and treatment indicator in ischemic retinopathies, notably for DR and
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Fig. 8. Macular neovascularization (MNV) treatment response imaged by OCTA. En
face images show the lesion at baseline and up to 46 months of follow up, with green borders
indicating visits in which anti-VEGF therapy was administered. Anti-VEGF treatments were
also provided on months 25 and 33, which are not shown above. With permission from
Wang et al. [156].

retinopathy of prematurity (ROP) [159,160]. Similar to MNV, RNV can lead to vision loss while
also being treatable with anti-VEGF therapy [161]. Detecting RNV is therefore a clinical priority.

Peripheral lesions remain the most challenging aspect of characterizing RNV with OCTA due
to the small fields of view in contemporary commercial devices. For this reason ultrawide-field
OCTA is advantageous for detecting RNV [37]. With OCTA RNV can be easily identified
by its location anterior to the inner limiting membrane (Fig. 7) [27,162,163]. As a result, In
head-to-head comparisons across the same field of view OCTA achieves equivalent or superior
detection sensitivity relative to fluorescein angiography and color fundus photography [37,158].

OCTA is advantageous for RNV analysis beyond just detection sensitivity. Similar to MNV,
OCTA can be used to monitor treatment response [164]. Another advantage for OCTA imaging
is that structural OCT data can be generated alongside the flow signal from data accrued during
the same procedure. Presumed glial sprouts visible in the structural channel may be precursors
to RNV [38]; observation of a combination of these features enabled detection of clinically
unsuspected RNV [162]. The structural channel is additionally useful for distinguishing RNV
from intraretinal microvascular abnormalities (IRMA) [165].

3.4. Vasculopathies

OCTA can also image pathology that directly affects vessels. The effective analytic methods on
these vasculopathy features would be very helpful for comprehensively investigating them.

Collateral vessels. Collateral vessels are one of several features relevant to branch retinal
vein occlusion visible with OCTA (Fig. 9) [166–168]. OCTA identifies more collateral vessels
than fluorescein angiography [169]. OCTA-based studies support the conclusion that collateral
vessels form in the deep capillary plexus as a result of capillary dropout [168,170].

Intraretinal microvascular abnormalities. Intraretinal microvascular abnormalities (IRMA)
are a pathologic feature in DR defined by the Early Treatment of Diabetic Retinopathy Study
Group as tortuous vessels exhibiting dilation [171]. OCTA is useful for imaging IRMA for two
reasons. First, it has a higher IRMA detection sensitivity than fundus photography, the other
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Fig. 9. Collateral vessels imaged with OCTA. (A) Radial peripapillary capillary plexus, (B)
superficial vascular complex, and (C) deep capillary plexus. Normal veins are blue, and
affected veins are purple. Yellow dashed circle in each layer indicates the collateral vessels,
defined as dilated capillaries between the normal and affected veins. With permission from
Tsuboi et al. [168].

major screening modality for DR [172]. Second, OCTA combined with structural OCT can
distinguish between IRMA and RNV, as a flow overlay on reflectance cross-sectional images can
clearly determine if flow is present above the inner limiting membrane [165]. In en face OCTA,
IRMA is characterized by tortuous, dilated capillary loops [173]. This appearance, along with
associated non-perfusion area, can be monitored to evaluate treatment response [173].

Microaneurysms. Microaneurysms are capillary dilations with multiple morphologies usually
occurring in the deep capillary plexus [174,175]. They are an important pathologic feature in
DR, where they are often the first pathology to develop [176].

The gold standard for microaneurysm detection remains dye-based angiography. Microa-
neurysms can occur throughout the retina, and the larger fields of view attainable by commercial
dye-based angiography imaging is beneficial for identifying peripheral microaneurysms. While
microaneurysms are visible with OCTA [177], multiple studies have demonstrated that even
within the same field of view dye-based angiography achieves a higher microaneurysm detection
sensitivity than OCTA [178–181], through it should be noted that some microaneurysms visible
with OCTA may not be detected with dye-based angiography [182], and furthermore some
features that appear to be microaneurysms with dye-based angiography can be recognized as
small neovascular lesions using OCTA [163]. Multiple en face image averaging in OCTA can
improve microaneurysm detection sensitivity [179].

The appearance of microaneurysms in OCTA recapitulates findings from histology, with focal
bulging, fusiform, and saccular types all visible [183]. Additional types identified in OCTA are
“pedunculated” and “irregular” [183]. OCTA can reach beyond just the flow signal characteristics
in order to identify further types of microaneurysms based on their appearance in the structural
OCT channel [182] (Fig. 10). These characterizations include the reflectivity of the associated
tissue, with hyper-reflective microaneurysms more associated with fluid accumulation than
hypo-reflective [184,185]. Some microaneurysms lack flow signal altogether; microaneurysms
with flow signal present are more closely associated with retinal fluid than those without [182].

Venous beading. Venous beading is used by the Early Treatment of Diabetic Retinopathy
Study (ETDRS) scale to stage DR [171]. Venous beading is visible with OCTA [131,186,187],
and OCTA was also able to determine that flow speed in affected veins is relatively high [18].
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Fig. 10. Microaneurysms characterization using OCTA. While dye-based angiography
has a superior detection sensitivity, OCTA do more than simply identify microaneurysms.
(A) Flow signal (retinal: violet, choroidal: red) overlaid on a structural cross-sectional scan.
The microaneurysm is apparent in the structural channel as a hyper-reflective oval. (B) En
face image, with the location of the cross-sectional scan in (A) marked by a dotted white line.
Arrows indicate microaneurysms identified on cross-sectional scans in which flow is either
present (red) or absent (blue). Microaneurysms with flow signal present are more likely
to be associated with retinal fluid than those without, indicating a relevant physiological
difference between the microaneurysm types. With permission from Gao et al. [182].

4. Future directions

OCTA can image most vascular pathology identifiable with alternative imaging modalities, and
in many cases offers improved detection sensitivity, clearer images, and additional information
such as the full three-dimensional location of pathology. Nonetheless some aspects of OCTA
imaging remain to be improved in order to enable better characterization of pathologic features
relevant to disease.

Field of view. OCTA can provide improved detection sensitivity for several biomarkers
relative to fundus photography and fluorescein angiography covering a similar field of view
[37,98]. However, both these alternative imaging modalities can provide much larger fields
of view than contemporary commercial OCTA devices. This means, for example, that while
OCTA can provide superior staging of DR from non-perfusion area within an equivalent field
of view compared to fluorescein angiography, ultrawide-field fluorescein angiography may still
achieve slightly higher diagnostic accuracy [98]. This implies that extending the field of view in
OCTA imaging could lead to improved characterization of the biomarkers discussed in this work
which could in turn lead to improved OCTA based diagnosis. In fact this has been demonstrated
for non-perfusion area in DR diagnostics (Fig. 11) [188]. However, it should be noted that
enlarged fields of view can exacerbate signal reduction artifacts due to sources like vignetting
and optical aberrations, which could in turn cause false positive non-perfusion area identification;
it is therefore important to review wide-field scans in order to identify regions affected signal
reduction when measuring non-perfusion areas [189]. Data-driven image denoising could also
help with this issue and possibly identification of other peripheral pathologic features [60–62].
Detection of treatment indicators such as retinal neovascularization in enlarged fields of view
would deliver immense benefit to clinical practice [37]. With the development of swept-source
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systems, contemporary research devices can obtain 75-degree fields of view in a single shot [190]
or larger 90-degree fields of view with montage [62].

 

Figure 10 

 

Figure 11 Fig. 11. Non-perfusion area segmentation using artificial intelligence in a montaged
widefield scan. (A) Wide-field angiogram including the macula, optic disc, and temporal
retina; (B) network output, with non-perfusion area labeled in teal and brightness indicating
network prediction confidence. Enlarging the field of view can improve diagnostic accuracy
for staging diabetic retinopathy based on non-perfusion area. With permission from Guo et
al. [95].

Quantification. Many of the pathologic features discussed here, including vessel density,
non-perfusion area, flow deficits, foveal avascular zone metrics, and macular neovascularization,
can be quantified using OCTA. Others, such as venous beading, remain at an observational stage
in OCTA analysis. The ability to quantify features vastly improves our ability to use them to stage
and diagnose disease, as well as evaluate treatment efficacy and response. Pathologic features
that currently lack tools for quantification would benefit from having such tools developed, but
some new quantification approaches may need to rely on advanced image processing such as
deep learning in order to achieve adequate performance. For example, to identify venous beading
it would be useful to be able to differentiate arteries and veins. This is a difficult task to perform
even for trained graders, but deep-learning-based algorithms can perform differentiate arteries
and veins directly from just OCTA data (Fig. 12) [191,192].

Correlation with other pathologic features and function. OCTA biomarkers are morpholog-
ical, and so do not directly assess visual or cellular function. OCTA is obviously most easily
correlated with structural OCT data because they can be captured from the same procedure and the
structural/vascular information from these sources is automatically co-registered. This registration
allows for excellent measurements of correlations between vascular and structural pathologies
images with OCT/OCTA devices, such as the relationship between microaneurysms and retinal
fluid noted above [182]. Other imaging modalities can also supplement OCTA, for example in
one study where adaptive optics scanning laser ophthalmoscopy was able to image cellular-scale
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Fig. 12. Artery/vein differentiation in OCTA using deep learning. Row 1: an eye with
branch retinal vein occlusion (BRVO); row 2: a healthy eye. (A) 6× 6-mm inner retinal
macular scans. (B) The output of a deep learning network trained to identify arteries (red)
and veins (green). Differentiating vessel type allows common vessel metrics such as caliber
(C) and tortuosity (D) to be quantified separately in arteries and veins. These separate
quantifications could be useful in assessing diseases that affect arteries and veins differently,
such as in BRVO. Artery/vein identification could also be a useful step for quantifying
biomarkers such as venous beading. Adapted with permission from Gao et al. [191].

abnormalities in ischemic regions identified with OCTA [193]. This approach has the potential to
elucidate disease mechanisms by compiling synergistic information that would not be available
from just OCTA measurements of vascular pathology. Similarly, direct comparisons between
OCTA and function must rely on other imaging modalities. For example, OCTA measurements
correlation with microperimetry measurements of visual field in glaucoma [194,195]. One very
promising avenue of research in this respect is OCT-based optoretinography [196–198], which
uses high-resolution OCT imaging to quantify retinal response to photostimulation and, similar
to structural OCT, could be automatically co-registered with vascular information for OCTA in
order to explore the relationship between vascular structure and function.

Biomarker-free diagnostics. As an alternative to any of the biomarkers discussed here,
advanced algorithms can diagnose disease directly from images, without appeal to any specific
features. Indeed, Eyenuk provided the first example of an automated image diagnostic platform
to gain FDA approval, and is used to diagnose DR. Several published results indicate that OCTA
scans can be analyzed directly by deep learning networks in order to provide diagnosis [199–204].
All of these approaches remain to be scaled in order to be applied to clinical practice. Through
the use of interpretability tools such as class activation maps could these networks could also
help identify new biomarkers that could subsequently be investigated and, eventually, reviewed in
an update to this work [205].

One additional shortcoming for OCTA studies concerns not the imaging technology itself,
but rather its maturity (or lack thereof): most OCTA studies are cross-sectional, in part simply
because the technology has not been around long enough to accrue many longitudinal results.
Future longitudinal could reveal new uses for the biomarkers discussed here and improve their
efficacy for evaluating disease and treatment options.
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5. Conclusion

By providing high-resolution, depth-resolved images of retinal and choroidal vasculature non-
invasively, OCTA can improve clinical practice and therapeutic research. OCTA images are
amenable to quantification, and measurement of biomarkers can inform research and improve
clinical practice. The amount of detail available in OCTA data is beneficial for characterizing
biomarkers, and as we develop better tools for this purpose we can expect a deeper understanding
of their role in disease to develop as well.
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